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A robust, implicit, low-dissipation method suitable for LES/DNS of compressible turbulent
flows is discussed. The scheme is designed such that the discrete flux of kinetic energy and
its rate of change are consistent with those predicted by the momentum and continuity
equations. The resulting spatial fluxes are similar to those derived using the so-called
skew-symmetric formulation of the convective terms. Enforcing consistency for the time
derivative results in a novel density weighted Crank–Nicolson type scheme. The method
is stable without the addition of any explicit dissipation terms at very high Reynolds num-
bers for flows without shocks. Shock capturing is achieved by switching on a dissipative
flux term which tends to zero in smooth regions of the flow. Numerical examples include
a one-dimensional shock tube problem, the Taylor–Green problem, simulations of isotropic
turbulence, hypersonic flow over a double-cone geometry, and compressible turbulent
channel flow.
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1. Introduction

Ideally, numerical schemes used in large-eddy simulations (LES) of compressible flow have the following properties: they
are (i) conservative, (ii) capable of capturing shocks, (iii) non-dissipative in regions of the flow that are smooth, and (iv) sta-
ble. Conditions (i) and (ii) are not too problematic: discretizing the conservative form of the governing equations ensures
that mass, momentum and total energy are conserved; shock capturing methods of various degrees of sophistication exist
in the literature and are relatively well studied.

As for condition (iii), ‘low-dissipation’ schemes have been constructed [1,2] by selectively switching on the dissipative
portion of the numerical flux in regions of the flow where discontinuities are detected (the fluxes used in most shock cap-
turing methods can be written as the sum of a symmetric, non-dissipative part and a dissipative portion). Detecting shocks
and discontinuities in a robust and efficient manner is a topic of current research; however, several shock detecting
‘switches’ have been proposed (e.g. [1–5]) and have been shown to be effective over a range of flow conditions.

Assuming that the shock capturing and detection mechanisms function adequately, we are left with the problem of trying
to ensure that the non-dissipative symmetric fluxes produce stable solutions. Numerical instability is especially problematic
in non-dissipative LES of turbulent flows. By construction, these solutions typically have substantial energy at all the
resolved wavenumbers – the Nyquist wavelength of the grid is usually close to the LES filter length scale, which is usually
in the inertial range of the energy spectrum and has large energy content (both in theory and in the numerical solution, for
. All rights reserved.
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non-dissipative schemes). In these situations, aliasing errors due to the non-linear convective terms in the Navier–Stokes
equations are significant and result in a ‘pile-up’ of energy in the aliased wavenumbers, eventually causing the solutions
to blow up if they are not contained. Aliasing errors are usually associated with high-order methods (because low-order
methods do not represent the largest wavenumbers accurately). Indeed, the first de-aliasing methods were designed for
pseudo-spectral simulations [6,7]. However, low-order central difference approximations or symmetric finite-volume fluxes
are also susceptible to instability and aliasing, and strategies to stabilize the solutions seem to work just as well for both high
and low-order schemes.

For compressible flows, there are two main approaches to dealing with the stability problem. Firstly, writing the convec-
tive terms in the ‘skew-symmetric’ form results in reduced amplitude of the aliasing errors relative to the divergence and
advective forms. This was shown using pseudo-spectral simulations of Burgers’ equation and compressible isotropic
turbulence by Blaisdell et al. [8]. Ducros et al. [9] derived a set of second and fourth-order accurate, conservative
‘skew-symmetric-like’ fluxes for finite-volume methods, with de-aliasing in mind. The skew-symmetric splitting has also
been used by [10–13], among others, for DNS and LES computations of compressible flows. In a recent paper, Kennedy
and Gruber [14] discussed skew-symmetric formulations for the cubic non-linearities that are found in the convective terms
of the compressible Navier–Stokes equations. A discussion on the use of skew-symmetric forms for incompressible flows,
and relevant references, can be found in the review paper by Moin and Mahesh [15].

The second approach uses the idea of secondary conservation laws [16,17] – essentially additional equations in conser-
vation law form for quantities (such as entropy) that can be derived from the primary conservation equations. Under cer-
tain conditions, such secondary quantities are called entropy functions and the corresponding fluxes are entropy fluxes
(among others, entropy functions have been studied in [16,18–20]). An entropy function can be used to generate a vector
of ‘entropy variables’ which can be mapped uniquely with the vector of conserved variables. For example, the entropy
function U ¼ qs can be used to generate the vector of entropy variables W ¼ @U=@U, where U is the vector of conserved
variables. The notion of entropy variables is used to enhance numerical stability in two distinct ways. Firstly, theorems
due to Godunov [16] and Mock [20] show that entropy functions and symmetrization are closely linked – a change of vari-
ables from U to W symmetrizes the equations of motion. The symmetric form is useful because it permits one to derive a
continuous energy estimate [21] which bounds a norm of the solution in time. This formulation was used by Gerritsen and
Olsson [22] and by Yee et al. [1] (the SHOEC scheme) and produced stable solutions for a broad range of compressible
flows. In a different approach, the entropy function theory is used to constrain the fluxes of the Euler equations in such
a way that the secondary conservation law is also discretely satisfied. If qs is used as the entropy function, this is essen-
tially a means of ensuring that the second law of thermodynamics is satisfied by the discretized Euler equations. Given a
set of entropy variables, a condition that the Euler flux has to satisfy to ensure discrete secondary conservation of the cor-
responding entropy function can be derived. Explicit solutions for the ‘entropy-satisfying’ Euler fluxes were derived by
Tadmor [23] and by Roe [24]. These schemes have been used to examine shock tube problems (with the carbuncle phe-
nomenon in mind), and we are not aware of the use of these fluxes in turbulent flow calculations, so the effect on stability
for LES calculations is uncertain.

Honein and Moin [25] used a combination of both ideas. The convective terms of the momentum equation were written
in skew-symmetric form; in addition, an equation for the internal energy was derived from the conservation equation for
entropy (qs), with the convective terms in the entropy equation also written in the skew-symmetric form. This aims to
ensure that, in addition to kinetic energy, the average of qs2 over the domain is not spuriously affected by the non-linear
convective terms. They compared their scheme with various other methods (including the SHOEC scheme and the
skew-symmetric-like formulation of [9]) using coarse grid simulations of isotropic turbulence and demonstrated its superior
stability at high Reynolds numbers.

In this paper, we primarily consider the equation for kinetic energy (qk ¼ quiui=2). For incompressible flows, the evolu-
tion of kinetic energy is implicitly represented by the evolution of the velocity: an equation for kinetic energy can be derived
by multiplying the momentum equations by the velocity components and summing. In the paper by Mahesh et al. [26], it is
shown that writing the discrete fluxes of the momentum equations in a form which makes the implied flux of kinetic energy
conservative ensures that the net change of kinetic energy in the computational domain is due only to boundary contribu-
tions and viscous dissipation. This vastly improves the stability of the calculations.

For compressible flows, the equation for kinetic energy transport is derived from the conservation equations for density
and momentum: it is not an independent equation. However, in most formulations, it is combined with the internal energy
to give us a set of equations in conservation form, which is important for flows with shocks. We concentrate on the terms
representing the flux of kinetic energy, @qkuj=@xj, and its rate of change, @qk=@t, which appear in the total energy equation. It
is easy to show that these terms can be obtained from the corresponding terms in the continuity and momentum equations,
for the PDEs: this is what is meant by ‘consistency’ in the title. For the spatial fluxes, ensuring that the discrete equations are
consistent as well gives us a simple set of constraints on the fluxes, similar to the incompressible flow formulation in [26], as
well as the skew-symmetric form presented in [9]. Ensuring that the discrete time derivatives are consistent results in a no-
vel density weighted Crank–Nicolson like scheme.

The paper is organized as follows. This introductory section is concluded by describing the governing equations and the
terminology used. Section 2 is concerned with the kinetic energy consistent formulation. Section 3 outlines the shock
capturing method and Section 4 discusses the implicit time integration method used. Numerical examples are presented
in Section 5 and the paper concludes with a summary in Section 6.
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1.1. Governing equations and nomenclature

The Navier–Stokes equations for a perfect gas, written in divergence form are
@U
@t
þ @

~Fj

@xj
¼ 0; ð1Þ
where the conserved variables, U, and the corresponding fluxes, ~Fj, are given by
U ¼

q
qu

qv
qw

E

0BBBBBB@

1CCCCCCA and ~Fj ¼

quj

quuj þ pd1j � r1j

qvuj þ pd2j � r2j

qwuj þ pd3j � r3j

ðEþ pÞuj � rkjuk þ qj

0BBBBBB@

1CCCCCCA:
The variables have the usual meanings: q, uj, p and T are the density, velocity, pressure and temperature. For the velocity
field, the notation ðu;v ;wÞ is used interchangeably with uj2f1;2;3g. The pressure is assumed to follow the ideal gas law,
p ¼ qRT . The total energy is the sum of the internal and kinetic energies, E ¼ qeþ qk, where k ¼ uiui=2 and e ¼ CvT. R
and Cv are the gas constant and specific heat at constant volume, respectively. The ratio of the specific heat at constant pres-
sure, Cp to Cv is c ¼ Cp=Cv and is assumed to be 1.4. The viscous stress tensor, rij, and the heat conduction vector, qj are
rij ¼ l @ui

@xj
þ @uj

@xi

� �
� 2

3
l @uk

@xk
dij and qj ¼ j

@T
@xj

:

The viscosity is given by Sutherland’s law, l ¼ l0T3=2=ðT þ T0Þ, by a power law, l ¼ l0ðT=T0Þa, where l0, T0 and a are con-
stants, or is set to a constant for certain low Mach number flows. The thermal conductivity, j, is assumed to be related to l
through a constant Prandtl number, Pr ¼ lCp=j, assumed to be 0.72. Integrating (1) over the control volumes defined by the
grid and using Gauss’ theorem gives the standard semi-discrete finite-volume formulation
@Ui

@t
þ 1

Vi

X
faces

~F 0fSf ¼ 0: ð2Þ
Fig. 1 shows the nomenclature used: the subscript i refers to the cell-center and nbr is a (generic) neighbor of cell i at the
face f. Sf is the area of face f and the unit normal to a face, ŝ (oriented away from the cell interior), has direction cosines
ðsx; sy; szÞ. Vi is the volume of cell i. Primes are used to denote the projection of a vector onto the unit normal at a face:
e.g., u0f ¼ ujsj ¼ usx þ vsy þwsz and ~F 0 ¼ ~Fjsj. The flux ~F 0 is split into inviscid (convective terms and pressure) and viscous (dif-
fusive terms and heat conduction) parts, ~F 0 ¼ F 0 þ F 0v , where F 0v is the viscous component.

2. A kinetic energy consistent flux

The kinetic energy, qk ¼ qðu2 þ v2 þw2Þ=2, is not an ‘entropy function’ (in the sense of [16,18–20]): the vector
@ðqkÞ=@U ¼ ð�k;u;v ;w; 0Þ> clearly does not have a one-to-mapping with the vector of conserved variables, U. Moreover, ki-
netic energy is balanced with the internal energy through the equation for conservation of total energy. Nevertheless, we can
try and ensure that the convective fluxes in the Euler equations do not artificially produce kinetic energy – the same reasons
that are used to justify writing the convective terms in skew-symmetric form.

A transport equation for kinetic energy can be derived using the continuity and momentum equations. Using the notation
U ¼ ðq;qu;qv ;qwÞ> and Fj ¼ ðquj;quuj;qvuj;qwujÞ> to denote the restriction of the full set of conserved variables, U, and
nbr

Fig. 1. Nomenclature. i denotes the cell-center, nbr is a neighbor of i at face f.
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the fluxes F to just the density and momentum portions (neglecting the pressure), the kinetic energy equation can be derived
from the Euler equations using
@qk
@U

� �>
� DU

Dt
¼ Dqk

Dt
;

where Dð�Þ=Dt denotes @ð�Þ=@t þ @ð�Þuj=@xj. Expanding the above and discretizing, we get, for cell i,
�ki ui v i wi½ � @

@t

q
qu

qv
qw

26664
37775

i|fflfflfflffl{zfflfflfflffl}
Ui

þ 1
Vi

X
f

qu0

quu0

qvu0

qwu0

26664
37775

f|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Sf

F0
f

8>>>>>>>>><>>>>>>>>>:

9>>>>>>>>>=>>>>>>>>>;
¼ @ðqkÞi

@t
þ 1

Vi

X
f

ðqku0SÞf ð3Þ
Initially, we adopt a semi-discrete approach and examine the spatial terms separately from the time derivatives. Equating
the convective fluxes in the equation above requires
�ki ui v i wi½ �
X

f

qu0

quu0

qvu0

qwu0

26664
37775

f

Sf ¼
X

f

ðqku0SÞf :
On the left hand side, pull the vector @ðqkÞ=@U inside the summation and rearrange to get
X
f

��k �u �v �w
� �

f
F0fSf �

1
2
�Dk Du Dv Dw½ �fF

0
fSf|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

A

8>><>>:
9>>=>>; ¼

X
f

ðqku0SÞf ; ð4Þ
where F0 is the numerical flux to be determined, the over-bar denotes the symmetric spatial average at a face,
(�af ¼ ðai þ anbrÞ=2) and D represents the spatial difference (Da ¼ anbr � ai). Assume that the flux F0f is consistent and conser-
vative. (In the sense that Fð� � � ;U;U; � � �Þ ¼ FðUÞ and FðUi;UnbrÞ ¼ FðUnbr;UiÞ.) Then the first term in the summation above is
an acceptable representation of the convective flux of the kinetic energy (the right hand side of the above equation). This
implies that we need to find a flux F0f such that the term marked A in the equation is identically zero. That is,
X

f

�Dk Du Dv Dw½ �fF
0
fSf ¼ 0:
This is always true if we adopt the form
F0f ¼ qfu
0
f

1
�u
�v
�w

26664
37775; ð5Þ
due to the identity Dk ¼ �uDuþ �vDv þ �wDw. The values of qf and u0f are left undetermined, except for the requirement that
they be symmetric. The flux of kinetic energy is inferred from Eq. (4) to be
X
f

ðqku0SÞf ¼
X

f

ð��kþ �u2 þ �v2 þ �w2Þf qu0Sð Þf �
X

f

1
2
ðuiunbr þ v ivnbr þwiwnbrÞ qu0Sð Þf : ð6Þ
Note that the convective flux terms prescribed above for the momentum equations are no different than the kinetic en-
ergy conserving fluxes used in incompressible flow codes (see for example [26]), except for the presence of density and the
use of Eq. (6) for the kinetic energy flux in the total energy equation. Also, for second-order formulations, the form of the
density and momentum fluxes (Eq. (5)) is similar to the skew-symmetric flux presented in [2].

2.1. Fully discrete formulation

Numerical tests show that time discretization is important if we are to gain an advantage from using the fluxes con-
structed above. The identity
�ki ui v i wi½ � @Ui

@t
¼ @ðqkÞi

@t
;
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which is true for the PDEs should, ideally, be true for the discrete equations as well. For incompressible flow, the use of a
Crank–Nicolson like scheme is natural: if the term uj

@uj

@t is discretized as
ðunþ1
j þ un

j Þi
2

�
ðunþ1

j � un
j Þi

Dt
;

it is exactly equal to ðknþ1 � knÞi=Dt. That is, if the velocities, uj, appearing in the momentum equation are written as the aver-
age of their values at time levels n and nþ 1, the rate of change of kinetic energy is algebraically consistent with that pre-
dicted by the momentum equations (the kinetic energy equation is not actually solved in incompressible flow). As a
consequence of the symmetry of the flux terms, the net change in kinetic energy only appears through the boundary fluxes.
This bounding property dramatically improves the stability of the scheme.

For the compressible Euler equations (and for variable density incompressible flow equations), we have to try to ensure
that the relation
uj
@quj

@t
� k

@q
@t
¼ @qk

@t
ð7Þ
is true discretely. A straightforward use of average values in time, as before, does not yield a discrete equality, as can be read-
ily verified:
ðunþ1
j þ un

j Þi
2

� ðqujÞnþ1
i � ðqujÞni

Dt
� knþ1

i þ kn
i

2
� q

nþ1
i � qn

i

Dt
–
ðqkÞnþ1

i � ðqkÞni
Dt

:

However, as we show below, if we use density weighted (in time) velocities in the equation above, we can exactly satisfy
the above relation. We discretize Eq. (7), above, and ask the question: is there a unique vector ½�kH

;uH;vH;wH� such that
�kH uH vH wH
� �

i

1
Dt

qnþ1 � qn

ðquÞnþ1 � ðquÞn

ðqvÞnþ1 � ðqvÞn

ðqwÞnþ1 � ðqwÞn

266664
377775

i

¼ ðqkÞnþ1
i � ðqkÞni

Dt
: ð8Þ
Roe’s parameter vector [27] was originally used by him to connect the jump in flux across an interface to the correspond-
ing jump in the vector of conserved quantities through a matrix constructed from a suitable average of variables on either
side of the interface (DFi ¼ AijDUj). The key element of Roe’s construction is an elegant transformation which permits one to
express the vector of conserved quantities and qk as quadratic products of the elements of a parameter vector
Z ¼ ffiffiffiffi
q
p

1 u v w½ �:
The algebraic identity DðpqÞ ¼ �pDqþ �qDp is obviously true for arbitrary jumps in p and q. (This is not as trivial as it appears.
For example, there is no corresponding unique expression for triple products.)

Denoting the elements of Z by zj2f1;2;3;4g, we express
½q qu qv qw qk� ¼ z2
1 z1z2 z1z3 z1z4

z2
1 þ z2

2 þ z2
3

2

� 	
:

This allows us to rewrite Eq. (8) as
�kH uH vH wH
� � 1

Dt

2�z1Dz1

�z1Dz2 þ �z2Dz1

�z1Dz3 þ �z3Dz1

�z1Dz4 þ �z4Dz1

26664
37775

i

¼ ð
�z2Dz2 þ �z3Dz3 þ �z4Dz4Þ

Dt
;

which can be arranged to read
�kH uH vH wH
� � 1

Dt

2�z1 0 0 0
�z2 �z1 0 0
�z3 0 �z1 0
�z4 0 0 �z1

26664
37775

Dz1

Dz2

Dz3

Dz4

26664
37775 ¼ 1

Dt
0 �z2 �z3 �z4½ �

Dz1

Dz2

Dz3

Dz4

26664
37775: ð9Þ
Since the above should be true for arbitrary jumps Dzj, we can solve
�kH uH vH wH
� �

¼ 0 �z2 �z3 �z4½ �

2�z1 0 0 0
�z2 �z1 0 0
�z3 0 �z1 0
�z4 0 0 �z1

26664
37775
�1

¼ �
�z2

2 þ �z2
3 þ �z2

4

2�z2
1

�z2

�z1

�z3

�z1

�z4

�z1

� 	
:
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Expanding the terms, we get
�kH

uH

vH

wH

2664
3775 ¼

�uH2 þ vH2 þwH2

2ffiffiffiffiffiffiffiffiffiffi
qnþ1

p
unþ1 þ ffiffiffiffiffiffi

qn
p

unffiffiffiffiffiffiffiffiffiffi
qnþ1

p
þ ffiffiffiffiffiffi

qn
pffiffiffiffiffiffiffiffiffiffi

qnþ1
p

vnþ1 þ ffiffiffiffiffiffi
qn
p

vnffiffiffiffiffiffiffiffiffiffi
qnþ1

p
þ ffiffiffiffiffiffi

qn
pffiffiffiffiffiffiffiffiffiffi

qnþ1
p

wnþ1 þ ffiffiffiffiffiffi
qn
p

wnffiffiffiffiffiffiffiffiffiffi
qnþ1

p
þ ffiffiffiffiffiffi

qn
p

266666666666664

377777777777775
: ð10Þ
These values are used in the expression for the convective fluxes (Eq. (5)) and the kinetic energy portion of the flux of total
energy, giving the convective flux
qu0

qu0u
qu0v
qu0w
qu0k

266664
377775

f

¼ qfu
0
f

1
uH

vH

wHfkH

266664
377775

f

;

where ð�Þ is a spatial average, as before, and fkH ¼ �kH þ uH2 þ vH2 þwH2 (see Eq. (6)). The terms qf and u0f , which were left
undetermined, are evaluated as qf ¼ ðqn

f þ qnþ1
f Þ=2 and u0f ¼ ðuHsx þ vHsy þwHszÞf .

The pressure and internal energy terms in the momentum and energy fluxes remain to be specified. In keeping with the
time and space centered evaluation of the convective fluxes above, it seems natural to write the pressure in the momentum
flux as pf ¼ ðpn þ pnþ1Þ=2. However, this leads to oscillatory solutions. The problem is especially noticeable in problems with
solutions that have energetic high frequency modes. Biasing the pressure flux toward the time level nþ 1 (which is equiv-
alent to adding a small amount of dissipation) by using the form
pf ¼
ð1� �Þpn þ ð1þ �Þpnþ1

2
;

where � is a small number, leads to cleaner solutions. Choosing � to be proportional to Dt would make the dissipation due to
the pressure biasing OðDtÞ2: a similar approach is used in the paper by Wall et al. [28]. Note that for the flow cases consid-
ered here, fully upwinding the pressure term in time (� ¼ 1) did not have an appreciable effect on the dissipation levels. One
of the reviewers for this paper makes the point that ensuring a ‘‘consistent” exchange of internal and kinetic energy through
the pressure terms in the energy and momentum equations might help resolve this problem. Writing Gibbs’s equation
(Tds ¼ de� p=q2dq) in a ‘‘conservation” form gives the relation
T
Dqs
Dt
þ e� sT þ p

q

� �
Dq
Dt
¼ Dqe

Dt
þ p

@uj

@xj
;

where Dð�Þ=Dt � @ð�Þ=@t þ @ð�Þuj=@xj. The right hand side consists of the time derivative, the convective flux and the pres-
sure–velocity coupling terms in the equation for internal energy. For inviscid flow, this should be zero and this is true only
if both the entropy (qs) and the density are discretely conserved (i.e Dqs=Dt ¼ 0 and Dq=Dt ¼ 0). This suggests that errone-
ous entropy production affects the correct exchange of kinetic and internal energies. Note that the dissipation introduced by
the pressure biasing helps prevent the net entropy in the computational volume from decreasing. Perhaps ensuring that en-
tropy is not spuriously produced by the fluxes (and the time discretization) would help resolve the question of why we need
to bias the pressure terms in time. We have not hit upon a satisfactory finite-volume scheme that is both kinetic energy con-
sistent and entropy conservative (in a fully discrete sense).

The flux of internal energy which appears in the energy equation is evaluated as qfu
0
fef ; where ef ¼ Cv ðTn þ Tnþ1Þ=2. The

viscous fluxes at a face, F 0v ;f involve the first derivatives of the primitive variables ðq;u;v;w; TÞ at the face. For calculations on
structured grids, these derivatives are evaluated with respect to the general curvilinear system ðn;g; fÞ and then transformed
to the Cartesian coordinate system ðx; y; zÞ. Details can be found in Hirsch [29].

3. Shock capturing

Shock capturing is accomplished by adding a dissipative flux
F 0f;diss: ¼ adissDf ; ð11Þ

where Df is the dissipative portion of a standard shock capturing scheme and 0 6 adiss 6 1 is a switch which takes on values
close to zero in smooth regions of the flow and values close to one at discontinuities. A robust expression for this shock
detection switch, suggested by Ducros et al. [2], is given by
adiss ¼min
h2

h2 þx2 þ �
;1

 !
; ð12Þ
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where x is the vorticity magnitude, h is the divergence of the velocity and � is a small number that prevents division by zero.
In regions of the flow where compressibility effects (represented by the dilatation) dominate, the switch assumes values
close to one and the full magnitude of the dissipative flux is applied; the reverse happens in turbulent regions of the flow
where the enstrophy is much larger than the dilatation. Among other switches in use, many involve combinations of pres-
sure and density gradients (e.g. [3,11]). A switch based on the jump in Mach number across the face is suggested by [30]. For
multi-dimensional calculations, for which the terms involved are well defined, we use the Ducros switch; for one-dimen-
sional problems with shocks, we use a simpler shock detector based on pressure and density gradients.

The dissipative portion of the modified Steger–Warming scheme [31] is used for the term Df . The first-order modified
Steger–Warming flux is given by F 0f ¼ ðRKþR�1Þf � Ui þ ðRK�R�1Þf � Unbr, where R is the right eigenvector matrix of the flux
Jacobian A ¼ @F 0=@U, K is the diagonal matrix of eigenvalues of A, and K� denote the splitting of the eigenvalues into positive
and negative parts, ðK� jKjÞ=2 (the subscript f indicates that the matrices are computed using average values at the face).
We can expand the flux above to get
F 0f ¼ ðRKR�1Þf �
Ui þ Unbr

2

� �
� 1

2
ðRjKjR�1Þf � ðUnbr � UiÞ:
The first term on the right hand side is the symmetric part of the modified Steger–Warming flux. This is replaced with the
kinetic energy consistent flux described in the previous sections. The dissipative part,
Df ¼ �
1
2
ðRjKjR�1Þf � ðUnbr � UiÞ; ð13Þ
is multiplied by the switch adiss;f to give F 0f;diss, where adiss;f ¼maxðadiss;i;adiss;nbrÞ. Note that if the matrices R and K are evaluated
using Roe-averages [27], the modified Steger–Warming flux and the commonly used Roe-flux are identical. In practice, the
terms Unbr and Ui are replaced with higher order interpolates, UR and UL, which are constructed using, for e.g., a second-order
TVD-MUSCL [32] scheme. Also, to avoid problems caused when the eigenvalues are close to zero (at sonic and stagnation points),
the modified eigenvalues
k�k ¼
kk �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

k þ dc2
q

2
;

are used instead. Here, d is a small number (this is flow dependent and is usually in the range 0:1–0:2) and c is the local speed
of sound.

4. Time integration

The discrete system of equations we are solving is
Unþ1
i � Un

i

Dt
þ 1

Vi

X
f

F 0f Un
f ;U

nþ1
f


 �
Sf ¼ 0; ð14Þ
where we are interested in finding Unþ1 and Un is assumed to be known. Uf indicates an average over the cells neighboring
face f; for example Uf ¼ ðUH

i þ UH

nbrÞ=2, where the star superscripts denote averages in time, as in Eq. (10).

4.1. Explicit iteration

A simple way to solve the system is by the explicit iteration
Unþ1;kþ1
i ¼ Un

i �
Dt
Vi

X
f

F 0f Un
f ;U

nþ1;k
f


 �
Sf ;
where k is an iteration index and the initial value Unþ1;0 is assumed to be Un. The iteration is stopped when an integral mea-
sure of the residual drops below some threshold:
norm Unþ1;kþ1 � Unþ1;k

 �

< �:
A scalar version of the set of equations would be ðunþ1 � unÞ=Dt ¼ f ððunþ1 þ unÞ=2Þ: Pierce [33] describes the stability lim-
its of the linear model problem, du=dt ¼ ku, solved using the above Crank–Nicolson like formulation and shows that a min-
imum of two iterations is required for second-order accuracy. In practice, the number of iterations to reach a prescribed
tolerance is larger, especially for flows with shocks.
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4.2. Implicit method

The time step allowed by explicit schemes is limited by the maximum wave speed juj þ c and the grid size Dx
Dtexp < Dx=ðjuj þ cÞ:
For turbulent flows, where the relevant velocity scale is the local velocity (u) rather than the maximum wave speed
(juj þ c), the time step we would ideally like to use is proportional to Dx=u. Dividing this by the allowable explicit time step,
Dtexp, results in a CFL number that scales as 1þ 1=M, where M is the Mach number (if we are not interested in capturing the
acoustics). Thus, the number of time steps required by an explicit scheme would be larger by a factor of Oð1=MÞ, which can be
unmanageably large for flows with low Mach number regions. In most aerodynamic applications, the presence of shear layers
requires grids that have high aspect ratio cells: the large variation in Dx imposes a severe time step restriction as well. For both
the reasons above, implicit time integration schemes are essential for efficient calculations of turbulent compressible flows.

We use an iterative scheme, whereby the solution is driven to a pseudo-steady state within each time step using a num-
ber of sub-iterations. The implicit equations are
ð1þuÞUnþ1;sþ1
i � ð1þ 2uÞUn

i þuUn�1
i

Dt
þ 1

Vi

X
f

F 0f Un
f ;U

nþ1;sþ1
f


 �
Sf ¼ 0: ð15Þ
Setting u ¼ 0 gives the first-order backward Euler formula and u ¼ 1=2 gives the second-order backward difference for-
mula (BDF2) for the time derivative; s is the sub-iteration index. The solution is obtained in two stages.

� First, set u ¼ 1=2 and solve the system
3Unþ1;s¼0
i � 4Un

i þ Un�1
i

2Dt
þ 1

Vi

X
f

F 0fðU
nþ1;s¼0
f ÞSf ¼ 0 ð16Þ
for Unþ1;s¼0.
� Next, use the initial guess and iterate till the system (14) is satisfied to a preset tolerance
DO

SOLVE:

Unþ1;sþ1
i � Un

i

Dt
þ 1

Vi

X
f

F 0f Un
f ;U

nþ1;sþ1
f


 �
Sf ¼ 0: ð17Þ

IF normðUnþ1;sþ1 � Unþ1;sÞ 6 tols EXIT

END DO
At the end of the above steps, we set Unþ1 ¼ Unþ1;sþ1. For steady state problems, or for rough, first attempts at a solution,
the iterative stage of the process can be dispensed with.

The implicit equations (16) and (17) are solved using the full-matrix point relaxation (FMPR) algorithm [34], described in
the next section. The flux linearizations
F 0ðUnþ1Þ � F 0ðUnÞ þ @F 0ðUnÞ
@Un � Unþ1 � Un


 �zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{dUn

ð18aÞ

F 0ðUn;Unþ1;sþ1Þ � F 0ðUn;Unþ1;sÞ þ @F 0ðUn;Unþ1;sÞ
@Unþ1;s � Unþ1;sþ1 � Unþ1;s


 �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

dUn;s

; ð18bÞ
are used to estimate fluxes which involve the solution at a future time level in Eqs. (16) and (17), respectively. For the Euler
equations, the flux is the sum of the symmetric and dissipative portions: F 0f ¼ F 0f;sym þ F 0f;diss; linearizing the flux as in Eq. (18a)
and using the definition of the dissipative flux (Eqs. (11) and (13)) gives
F 0fðU
nþ1
f Þ � F 0fðU

n
f Þ þ

@F 0f;symðU
n
f Þ

@Un
i

þ adiss

2
RjKjR�1


 �n

f

" #
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Aþ
f;adiss

�dUn
i þ

@F 0f;symðU
n
f Þ

@Un
nbr

� adiss

2
RjKjR�1


 �n

f

" #
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

A�f;adiss

�dUn
nbr; ð19Þ
where adiss is the shock detecting switch. We label the matrix multiplying dUi (the diagonal terms) as Aþf and the off-diagonal
matrix as A�f . (The corresponding expression for Eq. (18b) is similar.)

4.2.1. Point relaxation algorithm
Substitute the linearization (19) in Eq. (16) to get
3I
2Dt
þ 1

Vi

X
f

Aþf;adiss
ðUn

f ÞSf

n o� 	
� dUn

i|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Diagonal terms

þ 1
Vi

X
f

A�f;adiss
ðUn

f Þ � dUn
nbrSf

n o
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Off�diagonal terms

¼ � 1
Vi

X
f

F 0fðU
n
f ÞSf þ

dUn�1
i

2Dt
; ð20Þ
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where I is the identity matrix. A number of methods could be used to solve this system of equations. We propose to use the
full-matrix point relaxation (FMPR) algorithm [34], which consists of two steps (the subscript adiss on the Jacobians is omitted
below, for clarity):

1. Find a guess solution dUn;k¼0 by neglecting the off-diagonal terms. That is, find
dUn;k¼0
i ¼ 3I

2Dt
þ 1

Vi

X
f

Aþf ðU
n
f ÞSf

� " #�1

� 1
Vi

X
f

F 0fðU
n
f ÞSf þ

dUn�1
i

2Dt

" #
:

2. Include the effect of the off-diagonal terms in a series of relaxation steps

while res P tolk do

dUn;kþ1
i ¼ 3I

2Dt
þ 1

Vi

X
f

Aþf ðU
n
f ÞSf

� " #�1

� 1
Vi

X
f

F 0fðU
n
f ÞSf þ

dUn�1
i

2Dt
� 1

Vi

X
f

A�f ðU
n
f Þ � dUn;k

nbrSf

n o" #
;

end while
where the residual is defined as res ¼ normðdUn;k � dUn;k�1Þ, and the tolerance, tolk, is problem dependent (typically, we
continue the relaxation iterations until the residual has fallen by two or three orders of magnitude from its initial value).
The Jacobian matrices are ‘frozen’ at time level n, for simplicity. Note that the relaxation iteration index k is not to be con-
fused with the sub-iteration index s.

The following points concerning the stability and dissipative properties of the algorithm must be noted:

� When the dissipation switch adiss is small, using the Jacobians, A�f;adiss
, makes the implicit algorithm unstable. This is because

the diagonal dominance of the implicit operator is not guaranteed for small values of the switch, adiss. A recent paper by
Kim and Kwon [35] discusses this problem in some detail. Setting the switch to 1 (for the flux Jacobians only) stabilizes the
implicit routine, but at the cost of adding a dissipative term, as detailed below.

� Setting adiss to unity introduces a dissipative term since the LHS of the equation that is actually being solved is
3I
2Dt
þ 1

Vi

X
f

Aþf;a¼1ðU
n
f ÞSf

n o" #
� dUn

i þ
1
Vi

X
f

A�f;a¼1ðU
n
f Þ � dUn

nbrSf

n o
: ð21Þ
Subtracting Eq. (21) from the LHS of (20) and simplifying leaves us with the terms
1
Vi

X
f

1� adiss

2
RjKjR�1S

� �
f

� dUnbr � dUið Þ
� 	

: ð22Þ
By analogy with Eq. (13), these terms are identifiable with dissipation due to the choice of adiss ¼ 1 in the flux Jacobians.
Although the magnitude of the implicit dissipation is small, the effect is noticeable over a large number of time steps. This prob-
lem is especially severe when the solution has energetic high frequency modes (as in high Reynolds number LES simulations).
� With adiss ¼ 1, the Jacobians, A�f;a¼1, are interchangeable with the matrices A�f ¼ RK�R�1, where K� ¼ ðK� jKÞ=2. The dif-

ference between these and the matrices in Eq. (19) is negligible, so there is no need to compute terms such as @F 0f=@Ui:
the eigenvector matrices computed for the shock capturing part can be re-used.
4.2.2. Sub-iteration to pseudo-steady state
Now that we have an initial guess for Eq. (15), we can proceed with the sub-iterations to a pseudo-steady state. Use the

linearization (18b) in Eq. (17) to get
I

Dt
þ 1

Vi

X
f

Aþf ðU
n
f ;U

nþ1;s
f ÞSf

n o" #
� dUn;s

i þ
1
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A�f ðU
n
f ;U
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f Þ � dUn;s

nbrSf

n o
¼ �Unþ1;s

i � Un
i

Dt
� 1

Vi

X
f

F 0fðU
n
f ;U

nþ1;s
f ÞSf :
These equations are solved using the point relaxation method, as before. As the sequence of values Unþ1;s converges to a lim-
iting value (the ‘solution’, Unþ1), the LHS of the discretized equation above becomes zero and we are left with the desired con-
servation form
Unþ1
i � Un

i

Dt
� 1

Vi

X
f

F 0fðU
n
f ;U

nþ1
f ÞSf ¼ 0:
Note that if the sub-iteration process truly drives dUn;s close to zero, the implicit dissipation terms (Eq. (22)) also vanish.
The implicit method presented here is not necessarily the most efficient one. Convergence acceleration can be achieved

by using various preconditioning techniques (both matrix and low Mach number preconditioning), and by the use of a more
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efficient linear solver. Using a Newton–Krylov solver with block Jacobi preconditioning, for example, gives us a speedup of
around a factor of three. However, the point relaxation algorithm discussed in this section has the advantage of being simple
and easily reproducible without being too inefficient.

5. Results

5.1. Shock tube problem

A one-dimensional shock tube problem is computed to illustrate that the fluxes are conservative and that the shock cap-
turing mechanisms function adequately. At t ¼ 0, the conditions to the left and right of the initial discontinuity are specified
as ðql; pl; ulÞ ¼ ð1;1;0Þ and ðqr ; pr ;urÞ ¼ ð0:125;0:1;0Þ. The domain is of unit length and the initial jump is located at the mid-
point (this is Sod’s shock tube problem). The solution is advanced to t ¼ 0:2, at which point an expansion, a contact discon-
tinuity and a shock should be clearly seen. Fig. 2(a) shows the result of an Euler calculation on a 100 point grid. The shock
capturing is done using a TVD-MUSCL scheme combined with the switched dissipation method mentioned in Section 3. For
one-dimensional problems, the Ducros switch (Eq. (12)) is not useful since the vorticity is undefined; an alternate switch
based on pressure and density gradients which can detect the shock is used instead. The solution is identical to that obtained
using a standard shock capturing scheme and the shock location is correctly predicted. The exact solution to the problem is
also plotted, for comparison. Fig. 2(b) is the result of running a Navier–Stokes calculation on a finer mesh, of 500 points, with
the shock capturing mechanism switched off everywhere. The Reynolds number used is 2000, based on the initial sound
speed to the left of the jump and the length of the domain. The sharp gradients that are present have been cleanly captured,
without any ‘ringing’ or spurious oscillations. (see also the recent paper by Jameson [36]). The implicit time integration
scheme was used and the time step used in the calculations corresponds to a CFL number of approximately 1.2. To give
an idea of the cost of the implicit scheme, we note that the average number of relaxation iterations and the number of
sub-iterations required to drive the residual down by three orders of magnitude from its initial value were 5 and 4,
respectively.

5.2. Hypersonic double-cone flow

The hypersonic flow over double-cone geometries displays many of the complex phenomena such as shock interactions,
triple points and recirculation zones that are found in flow past hypersonic vehicles. This case is meant to demonstrate that
the low-dissipation numerics are capable of dealing with strong shocks and shock/shock interactions that are typical of these
flows.

This hypersonic Mach number flow case corresponds to the simulations of Nompelis [37]; the flow conditions are ob-
tained from the 25�–55� double-cone experiments of Holden and Wadhams [38] and Harvey et al. [39] (‘‘Case 35” in their
notation). The freestream conditions are
Fig. 2.
calcula
T1 ¼ 138:9 K; q1 ¼ 5:515	 10�4 kg m�3 and u1 ¼ 2713 m=s;
which gives a freestream Mach number of 11.3 and a unit Reynolds number of 1:3	 105 m�1 (Sutherland’s law is used to
determine the viscosity). The double-cone geometry has two conical sections, each of length 10.16 cm. An attached shock
is formed at the leading edge of the first cone and a detached bow shock ahead of the second one; their interaction produces
a transmitted shock wave that impinges on the surface of the second cone. The flow separates at the junction of the two
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Sod’s shock tube problem: (a) Euler calculation on a 100 point grid using a pressure-gradient based switch as shock detector. (b) Navier–Stokes
tion on 500 point grid; Re ¼ 2000. Dotted lines: exact inviscid solution at t ¼ 0:2. j: density, N: velocity, d: pressure.
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Fig. 3. Double-cone in hypersonic flow. (a) Temperature contours (1024	 512 grid). Inset shows the numerical shadowgraph of the shock interaction
region. (b) Heat transfer rate at the surface. Symbols: experiment, solid line: computation.
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cones and the recirculating region in turn alters the shock interactions. The size of the recirculation region is sensitive to the
levels of artificial dissipation in the numerical method [40].

The boundary conditions are supersonic inflow, no-slip isothermal-wall (Tw ¼ 296 K) and simple extrapolation at the out-
flow boundary. The grid size used in the calculation here was 1024	 512	 2 (1024 points along the surface, 512 points in
the direction normal to it and 2 points in the tangential direction). To generate the grid, a 2D grid (of size 1024	 512) is
swept by a small angle about the cone axis, to form a slice of the axisymmetric 3D geometry (symmetry boundary conditions
are applied at the lateral surfaces). The grid is clustered at the walls. The time step used in this case was relatively large: the
CFL number is ramped up to a maximum value of 105. Note that the low-dissipation form of the fluxes are used (TVD-MUSCL
with the minmod limiter and the Ducros switch). Fig. 3(a) shows temperature contours in a slice of the flow. The inset in the
figure shows a numerical shadowgraph (using the Laplacian of the density field) of the shock interaction region. The rela-
tively complex shock interaction is well represented. The heat transfer rate along the surface of the cone is plotted in
Fig. 3(b). Note that, in the forebody region, in order to obtain a good match with experimental results when the freestream
conditions mentioned above are used, the effect of vibrational relaxation and chemical reactions must be considered. Agree-
ment with the simulations in [37] is excellent.
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Fig. 4. Taylor problem, decay of kinetic energy vs. time at various Reynolds numbers. Solid lines are the analytical curves. Symbols are from computation.
Symbols: j: Re ¼ 1, N: Re ¼ 10,I: Re ¼ 102,J: Re ¼ 103, d: Re ¼ 1.
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5.3. Taylor–Green problem

The Taylor problem describes counter-rotating vortices that decay in time at a rate governed by the viscosity. It is an ana-
lytical solution to the incompressible Navier–Stokes equations, and for a 2D domain of size ðLx ¼ 2p; Ly ¼ 2pÞ, the solution is
given by
Fig. 5.
temper
u ¼ � cosðxÞ sinðyÞe�2mt ; v ¼ sinðxÞ cosðyÞe�2mt ; p ¼ p0 �
1
4
ðcosðxÞ þ cosðyÞÞe�4mt ;
where m is the kinematic viscosity and the value p0 essentially determines the initial mean Mach number of the problem. The
problem is a simple test of the robustness of a numerical algorithm. Mahesh et al. [26] show that, for incompressible flows,
central schemes that do not conserve kinetic energy cause the solution to blow-up at high Reynolds numbers (see also [41]).

Here, the mean Mach number was chosen to be 0.01 and the flow was initialized using the known solution. The grid size
used is 32	 32 and the time step in this case was 0.01, which gave a CFL number (based on the maximum wave speed,
juj þ c) of around 4. The dissipation terms are turned off (adiss ¼ 0). Fig. 4 shows the evolution of kinetic energy versus time
for Reynolds numbers ranging from 1 to1 (inviscid). The comparison with the known analytical solution is essentially exact
and the method is robust at extremely high Reynolds numbers.
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ature. Symbols correspond to a de-aliased spectral computation (from [25]) and solid lines are the result of our computations.
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5.4. Isotropic turbulence: DNS at low Rek

A resolved simulation of compressible isotropic turbulence is performed to validate the numerics. The initial Reynolds
number based on the Taylor microscale is Rek ¼ 30, the initial fluctuating Mach number, Mt0, is 0.3 and the grid has 643

points. For this low Re, the grid resolution is considered to be adequate for a DNS. The conditions are the same as those
of [42 and 25]. The initial energy spectrum is given by
EðkÞ ¼ 16
3

ffiffiffiffi
2
p

r
M2

t0
k4

k4
0

e�2k2=k2
0 ; k0 ¼ 4:
The given spectrum is used to generate a divergence-free, random initial velocity field using the method of Rogallo [43]. The
thermodynamic variables are initialized with uniform values and the time step used corresponds to a CFL of � 1 for this case.
Note that the dissipative terms are turned off.

The evolution of the non-dimensional turbulent kinetic energy and RMS values of pressure (p0), specific volume (v 0) and
temperature (T 0), defined as
p0 ¼ prms

cp0M2
t0

; T 0 ¼ Trms

ðc� 1ÞT0M2
t0

and v 0 ¼ v rms

v0M2
t0

;

are shown in Fig. 5. They are compared with data from [25] where results obtained using a de-aliased spectral method are
given. The agreement is reasonable.

5.5. Isotropic turbulence: coarse grid simulations

High Reynolds number LES/DES of flows in complex geometries are typically done on relatively coarse meshes. Under-
resolved simulations of isotropic turbulence are representative of these conditions and are a good test of the robustness
of a numerical method. These types of simulations were performed for incompressible flow in [26] and for compressible flow
in [25,41], among others.

5.5.1. Robustness at high Reynolds numbers
The initial conditions are generated in the same manner as with the DNS described in the previous section. The fluctu-

ating Mach number for these cases is Mt0 ¼ 0:07 and k0 ¼ 6 – the conditions correspond exactly to those of [25], who make
extensive comparisons of their numerical scheme with several other methods. They note that for these simulations, the ki-
netic energy and thermodynamic quantities decay at a rate determined by the Reynolds number for finite Rek, but remain
approximately constant (after a short transient) for Rek !1. Using de-aliased spectral simulations of the Euler equations,
they determined that as Rek !1, the non-dimensional thermodynamic quantities reach an approximately constant value,
v 0 � p � T 0 � 0:35, and that the non-dimensional kinetic energy stays constant (k=k0 � 1). The interesting point is that most
of the numerical schemes considered in their paper do not produce results consistent with these observations; typically the
kinetic energy is not bounded at high Rek and the rms values of the thermodynamic variables diverge.

The time evolution of the kinetic energy and fluctuating temperature is shown in Fig. 6. Note that at high Rek, the kinetic
energy stays bounded and for the inviscid case (Rek ¼ 1), stays constant. The fluctuating temperature has the expected
behavior when the Reynolds number is varied. For the inviscid case, T 0, as well as the other fluctuating thermodynamic vari-
ables reach values of � 0:31 which is fairly close to that predicted by spectral simulations. The only discrepancy is that in our
simulations, there is a sharp peak during the transient stage, where T 0 reaches a larger value than that shown in their paper.

5.5.2. Effect of dissipative fluxes
Note that the dissipation terms are switched off in the previous isotropic turbulence cases considered. In most simula-

tions, switching these terms off is not an option; even if there are regions in a flow where shock capturing is not required,
the switches we use to detect them are not perfect. The hope is that using the low-dissipation shock capturing schemes
would help in reducing the dissipation levels substantially, without compromising the shock capturing capability.

Case A: low Mach number

Here, we consider a decaying isotropic turbulence simulation at 323 resolution with conditions corresponding to the
Comte-Bellot–Corrsin [44] experiment. The paper provides data from experiments on decaying, grid generated isotropic tur-
bulence. The decay is actually spatial, but Taylor’s hypothesis can be used to compare these results with temporally decaying
turbulence in a periodic box. Spectra at three stations corresponding to non-dimensional times tU0=M ¼ 42;98 and 171 are
provided (U0 is the freestream velocity and M is the spacing in the mesh used to generate the turbulence). The Reynolds
number at the initial time is Rek � 72.

The initial fluctuating Mach number is set to 0.1 and the experimental spectrum at tU0=M ¼ 42 is used to initialize the
flow field using Rogallo’s method. The grid resolution is completely inadequate for this value of Rek – a turbulence model
is required to capture the actual decay. We present results from inviscid simulations, Navier–Stokes simulations (without



a turbulence model) and LES calculations to gauge the levels of dissipation that are present with and without the low-dis-
sipation switches. The SGS stresses and the turbulent heat flux in the LES calculations are modeled using the dynamic Sma-
gorinsky model,
sij �
dij

3
skk ¼ �2CSqD2jSj Sij �

1
3

Skkdij

� �
; skk ¼ 2CIqD2jSj2; qj ¼ �q

CsD
2jSj

PrT

@T
@xj

;

where Sij ¼ ð@ui=@xj þ @uj=@xiÞ=2, jSj ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2SijSij

p
, D ¼ ðDxDyDzÞ1=3. The coefficients CS, CI and PrT are determined dynamically

using the Germano identity (as in Moin et al. [45] with the modification due to Lilly [46]). The test filtering is done over the
face neighbors of each cell using a discrete form of the top-hat filter. For the isotropic turbulence cases in this paper, the
spatial averaging over homogeneous directions, which is necessary to avoid instability, is performed over the whole domain.

Fig. 7 shows the decay of kinetic energy for three values of the dissipation switch: (i) zero dissipation, adiss ¼ 0 (ii) ‘low-
dissipation’ fluxes which use the Ducros switch (Eq. (12)) for adiss, and (iii) fully dissipative fluxes with adiss ¼ 1. The left and
right states used in the dissipative flux are constructed using the MUSCL scheme with the minmod limiter. The time step
used corresponds to a CFL of � 2.

Fig. 7(a–c) shows the decay of kinetic energy with time from the Euler, Navier–Stokes (no model) and LES simulations,
respectively. The results highlight the striking levels of numerical dissipation due to undamped shock capturing schemes.
Lowering the dissipation levels with the Ducros switch helps a great deal – the no-model viscous simulation results for
the zero dissipation case and the low-dissipation case are reasonably close to each other, although a difference is still
apparent. When the turbulence model is switched on, the amount of numerical viscosity introduced by the switched dis-
sipation terms is negligible compared to the eddy viscosity. This is further confirmed by the energy spectra plots in
Fig. 7(d).

Case B: higher Mach number

Since the initial Mach number used in the simulation above is low, shock waves do not form in the domain and the shock
detection switch takes on low values everywhere. Here, we consider a simulation at an initial turbulent Mach number of 0.5.
For this case, shock waves form almost immediately after startup. Since no experimental data exists for these conditions, we
first perform a DNS on a 1283 point grid (the initial Reynolds number is Rek ¼ 72 and k0 ¼ 4). The results of the DNS match
well with similar computations done by Samtaney et al. [10]. Fig. 8(a) shows iso-lines of the fluctuating density (dashed lines
correspond to negative values) superimposed on contours of the dilatation (large negative values are plotted) at non-dimen-
sional time t=s � 0:75. This time instant is the point when the kurtosis of the velocity divergence reaches a peak (the kurtosis
is good indicator since a large deviation of the dilatation flatness from 3 will indicate the presence of shocklets). The figure
indicates the presence of shocklets.

The DNS results are now compared to LES on a 323 grid (the dynamic Smagorinsky model is used). Fig. 8(b) compares the
decay of kinetic energy with time for three values of the dissipation switch, as in the previous case: (i) zero dissipation,
adiss ¼ 0, (ii) ‘low-dissipation’ fluxes which use the Ducros switch (Eq. (12)) for adiss, and (iii) fully dissipative fluxes with
adiss ¼ 1. The results match reasonably well with the decay rate predicted by the (filtered) DNS. Fig. 8(b) and (c) shows
the velocity and dilatation spectra at t=s � 0:75, respectively. Note that the dilatation spectrum for the zero-dissipation case
diverges from the DNS result, whereas the ‘low-dissipation’ switch performs rather well. This strongly suggests that the shock
capturing is well localized and the shock detector works as intended.
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5.6. Compressible channel flow

As a final test case, we consider a supersonic isothermal-wall compressible channel flow. Results are compared with the
DNS study of this problem by Coleman et al. [47]. The flow is driven using a fixed uniform body force which appears as a
source term in the momentum and energy equations. Since the body force is fixed, the bulk velocity (ub) and wall shear stress
vary with time, oscillating about a roughly constant value after the flow reaches a statistically stationary state. The viscosity
is assumed to follow a power law with an exponent of 0:7, l / ðT=TwÞ0:7, where Tw is the constant wall temperature. The
Prandtl number is set to 0:7. The Reynolds number based on the bulk density, bulk velocity and the viscosity at the wall
is 3000 and the Mach number based on the bulk velocity and speed of sound (based on the wall temperature) is 1:5. The
flow is initialized using random noise (of maximum amplitude 0:2ub) superimposed on the laminar velocity profile. The dis-
sipative terms are turned off and the time step corresponds to a CFL of � 2.

The size of the domain is ½Lx ¼ 4p; Ly ¼ 4p=3; Lz ¼ 2�, where x and z are the streamwise and wall-normal directions,
respectively. The grid, which has 100	 100	 100 points, is uniformly spaced in the x; y directions and stretched in the
wall-normal direction using a hyperbolic tangent function,
zk ¼
tanh c 2ðk� 1Þ=ðnz � 1Þ � 1ð Þ½ �

tanhðcÞ :
The constant c was chosen to be 1:7 for this example. Expressing the grid spacings in wall units gives Dxþ � 24, Dyþ � 8
and the first point off the wall is at a height Dzþ � 0:9. The streamwise and spanwise grid spacings are comparable to those
used in the DNS of [47] and the wall-normal spacing is coarser (there are 8 points within 0 < yþ < 8; by comparison, in [47],
the first point off the wall is at yþ ¼ 0:1 and there are 10 points below yþ ¼ 8).
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Fig. 9. Compressible channel flow. (a) Mean velocity profile. (b) Turbulent normal stresses. (c) Wall normal vorticity contours in a plane at distance 0.04
units from the wall.
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Fig. 8. (a) DNS: Isolines of q� �q (dashed lines correspond to negative values) superimposed on contours of dilatation (values of h < �h0 are shown). (b)
Decay of kinetic energy with time (symbols are filtered DNS data). (c) Velocity spectra. (d) Dilatation spectra. For (b–d), Solid lines: adiss ¼ 0, dashed lines:
adiss � Ducros switch, dotted lines: adiss ¼ 1, symbols: DNS data.
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Fig. 9(a) shows the time and Favre averaged velocity profile compared with the DNS (note that the velocity is normalized
by the mean bulk velocity in the plots). The mean centerline velocity is 1:163 which compares well with the value 1:175
predicted by the DNS. Fig. 9(b) compares the predicted turbulent normal stresses (double primes denote fluctuations about
a Favre averaged quantity: f 00 ¼ f � hqf i=hqi). The agreement is quite reasonable. Finally, Fig. 9(c) shows contours of the wall
normal vorticity on an x–y plane at a distance 0:04 units from one of the walls. This is meant to serve as a qualitative com-
parison with a similar plot in [47] which shows xz contours at the same plane; the figures are strikingly similar.
6. Summary

We have presented an implicit second-order scheme for turbulent compressible flow suitable for DNS/LES applications.
For problems without shocks, the method is robust and does not need artificial dissipation, upwinding or filtering. For flows
with shocks, using a shock detecting switch gives results that have low levels of dissipation without compromising the shock
capturing capability. Numerical test problems included decaying isotropic turbulence, channel flow simulations and the
hypersonic flow over a double-cone geometry. The method is easily adaptable to unstructured grid solvers and shows po-
tential for use in LES/DNS of realistic problems.
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